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SUMMARY 

Adaptive and non-adaptive finite difference methods are used to study one-dimensional reaction-diffusion 
equations whose solutions are characterized by the presence of steep, fast-moving flame fronts. Three 
non-adaptive techniques based on the methods of lines are described. The first technique uses a finite volume 
method and yields a system of non-linear, first-order, ordinary differential equations in time. The second 
technique uses time linearization, discretizes the time derivatives and yields a linear, second-order, ordinary 
differential equation in space, which is solved by means of three-point, fourth-order accurate, compact 
differences. The third technique takes advantage of the disparity in the time scales of the reaction and 
diffusion processes, splits the reaction-diffusion operator into a sequence of reaction and diffusion operators 
and solves the diffusion operator by means of either a finite volume method or a three-point, fourth-order 
accurate compact difference expression. The non-adaptive methods of lines presented in this paper may use 
equally or non-equally spaced fixed grids and require a large number of grid points to solve accurately 
one-dimensional problems characterized by the presence of steep, fast-moving fronts. Three adaptive 
methods for the solution of reaction-diffusion equations are considered. The first adaptive technique is static 
and uses a subequidistribution principle to determine the grid points, avoid mesh tangling and node 
overtaking and obtain smooth grids. The second adaptive technique is dynamic. uses an equidistribution 
principle with spatial and temporal smoothing and yields a system of first-order, non-linear, ordinary 
differential equations for the grid point motion. The third adaptive technique is hybrid, combines some 
features of static and dynamic methods, and uses a predictor-corrector strategy to predict the grid and solve 
for the dependent variables, respectively. The three adaptive techniques presented in this paper use physical 
co-ordinates and may employ finite volume or three-point, compact methods. The adaptive and non- 
adaptive finite difference methods presented in the paper are used to study a decomposition chemical 
reaction characterized by a scalar, one-dimensional reaction4ffusion equation, the propagation of a one- 
dimensional, confined, laminar flame in Cartesian co-ordinates and the Dwyer-Sanders model of one- 
dimensional flame propagation. It is shown that the adaptive moving method presented in this paper 
requires a smaller number of grid points than adaptive static, adaptive hybrid and non-adaptive methods. 
The adaptive hybrid method requires a smaller time step than adaptive static techniques, due to the lag 
between the grid prediction and the solution of the dependent variables. Non-adaptive methods of lines may 
yield temperature oscillations in front of and behind the flame front if Crank-Nicolson techniques are used 
to evaluate the time derivatives. Fourth-order accurate methods of lines in space yield larger temperature 
oscillations than second-order accurate methods of lines, and the magnitude of these oscillations decreases 
as the time step is decreased. It is also shown that three-point, fourth-order accurate discretizations of the 
spatial derivatives require the same number of grid points as second-order accurate, finite volume methods, 
in order to resolve accurately the structure of steep, fast-moving flame fronts. 
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1. INTRODUCTION 

Many models of heat transfer, combustion theory, biology and epidemology are governed by 
one-dimensional reaction-diffusion equations whose solutions are characterized by the presence 
of the steep, fast-moving fronts. For example, the propagation of one-dimensional laminar 
flames through premixed, confined or unconfined mixtures is characterized by a moving or 
stationary, thin flame front, where most of the chemical reactions occurs. 

In order to resolve accurately the structure of steep, fast-moving fronts, one may employ 
adaptive or non-adaptive finite difference1 and finite element2 methods. Non-adaptive numerical 
methods employ fixed grids, which must be refined sufficiently so as to resolve the flame front 
structure. Since the front may move with time, a sufficiently large number of grid points must be 
placed throughout the entire computational domain. This means that regions far away from the 
flame front, where slow changes are expected, must have the same grid point density as those near 
the flame. As a consequence, non-adaptive numerical techniques require the solution of a large 
number of algebraic equations. 

Adaptive techniques employ ‘smart’ grids whose points are concentrated near the steep, 
fast-moving front. Three types of adaptive methods have been developed in recent years: static. 
moving or dynamic, and hybrid techniques. 

Adaptive static methods, also called rezoning techniques, may be based on the equidistribution 
of a positive weight function, the magnitude of truncation errors, variational formulations, 
modified equation methods, a priori and/or a posteriori error estimates, gradients of the depend- 
ent variables, etc.2 

Adaptive moving methods may be based on equidistribution, transformation or  variational 
principles, whereas adaptive hybrid methods3. are intermediate between adaptive static tech- 
niques, where the grid points may remain fixed for intervals of time, and adaptive dynamic 
methods, where the grid motion is coupled fully to the solution of the partial differential 
equations. 

In this paper, three non-adaptive and three adaptive finite difference methods of lines are 
presented. The first non-adaptive method uses a conservative finite volume formulation and yields 
a system of first-order, non-linear, ordinary differential equations in time for the values of the 
dependent variables, is second-order accurate in space and involves three grid points. 

The second non-adaptive method of lines uses time linearization, discretizes the time derivat- 
ives and yields a system of linear, second-order, ordinary differential equations in space. This 
system of equations can be discretized by means of second- or fourth-order accurate spatial 
approximations. 

We use three-point, compact finite differences to solve the system of linear, second-order, 
ordinary differential equations in space, which results from the time linearization of the reac- 
tion-diffusion operator. 

The third non-adaptive method of lincs takes advantage of the disparity in the time scales of the 
reaction and diffusion processes and splits the reaction-diffusion operator into a sequence of 
reaction and diffusion  operator^.^ The reaction operator is governed by a non-linear, first-order, 
ordinary differential equation in timc, which can be solved by means of a Newton method, 
whereas the diffusion operator can be solved by means of second- or fourth-order accurate 
methods of lines. 

The three adaptive methods considered are based on the equidistribution of a positive weight 
function which corresponds to the arc length of the (non-dimensional) dependent variables and 
avoids mesh tangling and node overtaking. The first adaptive technique also uses a subequidis- 
tribution principle to ensure smooth grids and requires interpolation between the old and the new 
grid. 
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The second adaptive technique uses temporal and spatial grid smoothing and yields a system of 
first-order, ordinary differential equations for the grid motion. This system is fully coupled and 
must be solved with the partial differential equations which govern the dependent variables. 

The third adaptive method considered is a hybrid technique based on a predictor-corrector 
procedure, which is used to predict the grid point locations and the values of the dependent 
variables. 

The three adaptive techniques presented in this paper do not use co-ordinate transformations 
or Lagrangian co-ordinates. Therefore, the governing equations can be solved in the physical 
domain by means of the non-adaptive methods of lines presented in Section 3. 

2. FORMULATION 

In this paper we shall be concerned with the numerical solution of one-dimensional reac- 
tion-diffusion equations such as those which govern heat transfer phenomena with internal heat 
generation, biology, epidemiology, laminar flame propagation, etc. For the sake of generality, we 
will consider the following one-dimensional reaction-diffusion equation: 

dU 3F 
t = m s s ’  

where t is time; x is the spatial co-ordinate; U, F and S are N-dimensional real vectors; U is the 
vector of dependent variables; S = S(U) is a non-linear source term; and 

c?U 
dX 

F E D - ,  

where D = D(U) is an N x N real diagonal matrix. 
Initial and boundary conditions must be specified in order to solve equation (1) and will be 

given in Section 5 for the different types of problems considered in that section. For confined- 
flame propagation problems, the spatial co-ordinate, x, is bounded, whereas x is unbounded for 
unconfined-flame propagation phenomena. Furthermore, in many problems of combustion 
theory and biology, the solution of equation (1) is characterized by the presence of steep, 
fast-moving fronts which must be resolved accurately. This means that the grid used to discretize 
equation ( 1 )  must be sufficiently refined near and must move with the steep, fast-moving fronts. 

In this paper we consider non-adaptive and adaptive finite difference methods for the discretiz- 
ation of equation (1). Non-adaptive methods may employ equally or non-equally spaced fixed 
grids and are of great importance for unconfined-flame propagation problems characterized by 
the presence of a stationary flame near a burner. Adaptive methods employ grids which adapt to 
the solution of equation (1) .  Such an adaption can be static, dynamic or hybrid. In static or 
rezoning methods, the grid is adapted in a static manner according to variational, equidistribu- 
tion, and other criteria, whereas moving techniques account for the grid motion and concentrate 
the grid points near steep moving fronts. Hybrid techniques are intermediate between static and 
moving methods. 

3. NON-ADAPTIVE METHODS 

In this section we consider three non-adaptive methods of lines for the numerical solution of 
equation (1). The first method discretizes the space variable and keeps the time variable 
continuous, while the second technique discretizes the time variable and uses three-point, 
compact or Hermitian operators to solve the resulting time-discretized form of equation (1). The 
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third method takes advantage of disparity in the time scales of the reaction and diffusion 
processes. 

3.1. Method of lines in time 

Consider a non-equally spaced grid in x, integrate equation (1) from xj-1/2 to xj+1/2, where 
and assume that both U and S are constant within this interval of 

integration. The result of this integration can be written as 

where, for example, 

Substitution of equations (4) and (5) or (4) and (6) into equation (3) yields a system of first-order, 
non-linear, ordinary differential equations for Uj. This system can be written as 

where f(Uj- 1 ,  Uj, Uj+ 1 )  denotes a vector function that depends on Uj- 
Equation (7) implies that the solution Uj at grid point xi depends on those at its adjacent 

points. Furthermore, if equation (7) is to be solved at N J  grid points, the number of ordinary 
differential equations to be solved is N x N J ,  and the spatial accuracy of equation (7) is O(Ax2), 
where A x  denotes the largest value of (xi+ - x j ) .  

Uj and Ujt 1 .  

Equation (7) can be also written as 

where g(V) denotes a vector function of V, 

v =(u:, u;, . . . , U$J)T, (9) 
the superscript T denotes transpose, and the subscript j =  1,2, . . . . , N J  denotes the grid points 
at which equation (7) is to be solved. Equation (8) can be solved by means of a variety of 
ordinary differential equations integrators. Note that equations (7) and (8) are, in general, stiff 
because of the non-linear source S, and that, if explicit methods were used to solve equation (8), 
the time step would be controlled by the eigenvalue of ag/dV whose absolute value or magnitude 
is the largest. 

Equation (8) can be discretized by means of the following method: 

vn+~ -vn = A ~ C ( I  -e)g(vn)+ eg(vn+ 91, (10) 
where At  is the time step, V"=V(t"), tn=nAt ,  where n is an integer, and 8, 01t3~1, is an 
implicitness parameter: the values of 6 =0, 1/2 and 1 denote the Euler forward, Crank-Nicolson 
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and the Euler backward difference methods, respectively, which are O(At), O(Atz) and O(At) 
accurate, respectively. 

As stated in previous paragraphs, explicit methods [S-0 in equation (lo)] require small time 
steps and were not used in the calculations presented in this paper. 

Since 8= 1/2 and S =  1 yield implicit equations, equation (10) was solved by means of a 
Newton-Raphson method as follows. Equation (10) can be written as 

G(V"")=P(V"), (1 1) 
where 

G(V"+') = At Sg(V"+ ' ) -V"+ ', 
P(V")= -V"-At(1 -S)g(V") 

and G is a non-linear function of V. 
Equation (1 1) can be quasilinearized as 

G(Vk)+ - (Vk+'-Vk)+h.o.t.=P(V"), (Ey 
where the superscript k denotes the kth iteraction within the time step, h.0.t. denotes higher-order 
terms, and (i3G/i3V)k= J denotes the Jacobian matrix. Equation (14) can also be written as 

CP(V")- G(Vk)l,  (15) Vk+ 1 = Vk+J- 1 

which requires the inverse of the Jacobian matrix, whose dimensions are ( N  x N J )  x ( N  x N J ) .  
In general, the computation of J - '  at each iteration and at each time step is a time-consuming 

task, especially if N x NJ is a large number. For this reason, the following modified, damped 
Newtonian method was used in the calculations: 

Vk+' =Vk + ak J - '  [P(V")- G(Vk)], (16) 

where ak, 0 < ak I 1, is a damping parameter (a  = 1 corresponds to the standard Newton-Raphson 
method) and the inverse of the Jacobian matrix, J -  ', was evaluated periodically according to the 
following error control strategy. If the difference lAVkI = I Vk+'  -Vkl within the time step is larger 
than 1% of Vk, the Jacobian matrix was re-evaluated, i.e. the Jacobian matrix was not re- 
evaluated unless lAVki was larger than 0-OIVk. Note that, in combustion problems, the temper- 
ature and species mass fractions are greater than or equal to zero, i.e. V 2 0 ,  

Substantial computer savings were also obtained by storing the LU-decomposition of J. Note 
that J can be decomposed as 

J = LU, (1 7) 

where L and U are lower and upper tridiagonal matrices, respectively. 
The convergence rate of the Newtonian method given by equation (15) is quadratic, provided 

that the initial estimate of V is close enough to the solution. In the calculations presented in this 
paper, the initial guess for the solution of equation (16) always was V", i.e. the value of V at the 
previous time step, and the iterative, modified, damped Newton technique was stopped and the 
time was advanced when the following convergence criterion was satisfied: 

NJ 
[(AVk)T-AVk]112= [(AVt)T*AVf]1'2 

Equation (18) corresponds to the &-norm of the vector AVk. 
i =  1 
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3.2. Method of lines in space 

In the method of lines considered in the previous section, space was discretized and the time 
variable was kept continuous. In this section, we consider methods of lines based on the 
discretization of the time variable. 

Consider equation (l), which can be discretized in time as 

AU 
- = ( I  - 0)Q" + 6'Qnt1, 
At 

where AU = U"+ ' - U', 8, 0 I 6, I 1, is an implicitness parameter and 

aF 
Q = z + S .  

For the same reasons as those stated in the previous section, we will consider only the Euler 
backward and Crank-Nicolson methods corresponding to 0 = 1 and 6, = 1/2, respectively. 

Equation (19) can be linearized with respect to time as follows: 

Q"+'=Q"+ - At+O(At2) (:3y 
and, since t and x are independent variables, S is only a function of U, and F is a function of U 
and dU/ax, 

(22) Sn+l- -S n + -- AU+O(At2), 

where U, = dU/dx. 
Substitution of equations (21)-(23) into equation (19) yields 

At 

where 

(24) 

U: is an N x N diagonal matrix whose elements are the derivatives of the components of U with 
respect to x, i.e. the ith element of U: is dUi/dx, where Ui denotes the ith component of the vector 
U, and dD/dU is an N x N matrix whose ith row consists of the elements aDi/aUj, j =  1,2, . . . , N ,  
and Di is the element in the ith row and column of the diagonal matrix D. Note that A, B and 
C are functions of space and time because they depend on U, which is a function of t and x. 

The spatial derivatives in equation (24) can be discretized by means of second-order, conserva- 
tive, finite differences to yield a block tridiagonal matrix for the vector U. In this paper, however, 
equation (24) is discretized by means of three-point, fourth-order accurate, compact or Hermitian 
differences, as shown in the sequel. 

Equation (24) can also be written as 

J 2 Y  aY 
ax ax a ?+b --+cy=d, 
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where 

y=AU, a=OB", b = 8  -+An , (z ) 

and I is a unit matrix. 
Equation (24) represents a linear, second-order, ordinary differential equation for y. The 

linearity of this equation is a consequence of the time linearization represented by equation (2 1) 
and the fact that a, b, c and d are evaluated at t" = n At, whereas equation (26) is to be solved for 
AU or U"+l. Note that a, b and c are N x N matrices. 

The linearity of equation (26) allows us to employ three-point, compact or Hermitian difference 
formulae as fol10ws.~. Equation (26) can be written as 

aG + bW + cy= d, (29) 
where C, = d2y/dxZ and W = dyjdx. 

three equations with nine unknowns, i.e. yj- 1, yj, yj+ 
Furthermore, one can use the following Taylor series expansions: 

Equation (29) can be applied at the non-equally spaced grid points xj- 1, x J  and xj+ to obtain 
W j ,  Wj+ 1 ,  G j -  1, G j  and G j +  1. Wj- 

1 1 d3y, 1 ?4y, 

1 1 l 3  1 Z4Y, 4 

2 6 ox 24 ax 

y ,+l  =y,+ w,H+- G , H ~ + -  ~ 3 + - -  H ~ + o ( H ~ ) ,  
2 6 ax 24 dx 

y,-  = yJ- W,h+- G,hZ-- 2 h 3  +- 7 h +O(h5),  

W,,, = WJ+ G,H+-  I a3YJ  HZ+ld4y, H 3  +O(H4), 
2 ax 6 ax4 

1 ?3y, 1843; 
W,- I = W, - G,h + - ~ hZ -- ~ h 3  +0(h4), 

23YJ 1 24y, 
G,,  = G,+- H + -  ~ ~ 2 +  0 ( ~ 3 ) ,  

2 dx3 6 ax4 

?x3 2 2x4 

(33) 

(34) 

where H = xj+ - xj and h = xi - xj- I. 
From equations (34) and (35),  we can obtain the values of d3yj/dx3 and d4yj/2x4 as functions of 

G J - l ,  G j  and Gj+ 1 .  These values can then be substituted into equations (30)-(33) to obtain four 
algebraic equations for yk, W k  and Gk,  with k = j - l ,  j ,  j + l ,  i.e. four equations with nine 
unknowns. These four equations plus equation (29), applied at j -  1, j and j +  1, provide seven 
equations with nine unknowns, which can be used to eliminate the values of Wj- 
G j -  G j  and G j +  and to obtain the following linear algebraic equation? 

Wj, Wj+ 

"Yj-1 + B Y j + X Y j + 1 = 4  (36) 

where u, j? and x are N x N matrices, 6 is an N-dimensional vector, and the values of u, p ,  3~ and 
6 depend on H and h and on the values of a, b, c and d at the grid points j -  1, j and j +  1. 

Boundary conditions can easily be implemented in equation (36). If boundary conditions of the 
third (Robin) type are specified, the system of seven equations mentioned above is applied at  the 
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first interior point near the boundary together with the boundary conditions to obtain a system of 
eight equations with nine unknowns. This system can be used to eliminate the values of Wj- 1 ,  

W j ,  Wj+l ,  Gj- l ,  G j ,  Gj+l and the value of y two grid points away from the boundary. This 
elimination yields a linear equation for the value of y at the boundary as a function of the value of 
y at the next point closest to the boundary. This linear equation at the boundary has to be solved 
together with equation (36), which is valid only at interior points. 

Equation (36) is a three-point, fourth-order accurate, linear algebraic equation which has 
a block tridiagonal structure and can be written as 

MY=H, (37) 
where Y = [yT, yT, . . , , y:J]T represents the column vector of dependent variables at the points 
j =  1,2, . . . , NJ, where equation (36) is to be solved, M is an ( N  x N J )  x ( N  x N J )  square matrix 
and H is an N x N J  vector. M is a block tridiagonal matrix because a, p and x in equation (36) 
depend only on the values of y a t j -  l,j, j +  1. The matrix M can be written in LU-decomposition 
form, i.e. M=LU, and equation (37) can be written as 

LY*=H, (38) 

UY=Y*.  (39) 
Equation (38) can easily be solved by forward substitution to evaluate Y*, which can then be 

substituted into equation (39) to obtain Y by backward substitution. 
It must be pointed out that the discretization of equation (1) presented in Section 3.1 is 

conservative, while that presented in this section is not, because the diffusion terms in equation 
(24) were differentiated in order to obtain equation (26). It must also be pointed out that 
equations (24) and (26) are both linear, whereas equation (8) is highly non-linear. 

3.3. Operator-splitting methods of lines 

The methods of lines presented in Sections 3.1 and and 3.2 can also be used with operator- 
splitting techniques, which take advantage of the disparity in the time scales of the diffusion and 
reaction processes which are present in equation (1). The characteristic diffusion and reaction 
times of equation (I)  can be estimated as 

where t d  and t, denote the characteristic diffusion and reaction times and 1 1  D 11 and 11 aS/aU 11 
represent the norms of the diagonal marix D and of the matrix aS/dU, respectively. For example, 
the values of I /  D 11 and I] aS/aU 11 may be set equal to the largest absolute value of the eigenvalues 
of D and aS/aU, respectively. If t d  < t,, diffusion phenomena are slower than those associated with 
the source term S. One can take advantage of the difference between t d  and t, by splitting the 
reaction-diffusion operator of equation (1) into the following sequence of reaction and diffusion 
operators: 

au 
at 

L R :  -=s, 

au aF 
at ax’ 

L,: -=- 

where LR and LD denote reaction and diffusion operators, respectively. The diffusion operator 
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involves spatial derivatives and can be discretized by using the same techniques as those 
presented in Sections 3.1 and 3.2, whereas the reaction operator represents a system of first-order, 
non-linear, ordinary differential equations, which can be solved by means of the Newton 
method presented in Section 3.1. 

The diffusion operator represented by equation (42) can be solved by means of the Euler 
backward or Crank-Nicolson methods with a time step At, and, if t d / t r >  1, one can solve the 
reaction operator NT times, where N T  is the natural number closest to t d / t r .  Therefore, if td>tr ,  
equation (41) is solved N T  times with a time step equal to AtINT using as initial condition U". 
The resulting value of U, i.e. U', is used as initial condition for the solution of equation (42) and 
the solution is said to have converged if equation (18) is satisfied. This approximation can be 
justified both analytically and numerically, for the condition td > t ,  implies that the chemical 
reactions occur at a much faster rate than the diffusion processes and since, in order to resolve 
accurately the chemical reaction processes, the time step must be smaller than the chemical 
reaction time, t,, the diffusion processes may be assumed to be frozen in the time scale of the 
chemical reactions. This approximation can also be justified by means of asymptotic methods, e.g. 
the method of multiple scales, due to the disparity in the time scales of the reaction and diffusion 
processes. 

The methods of lines presented in Sections 3.1 and 3.3 are iterative, whereas those of Section 3.2 
are not. 

4. ADAPTIVE METHODS OF LINES 

The methods of lines presented in Section 3 use fixed grids which should concentrate the grid 
points in regions where steep gradients of the vector U exist. Since U is an N-dimensional vector, 
it is possible that the components of this vector exhibit steep gradients at different axial locations. 
If this occurs, the grid may have to be concentrated at different axial locations. In most 
combustion problems, however, a good criterion for grid refinement is the temperature profile, i.e. 
only one component of the vector U is sufficient to refine the grid. 

In one-dimensional, laminar-flame propagation problems, the flame front may move as 
a function of time and the grid should be adapted or moved in such a manner that a sufficiently 
large number of grid points is located at the flame front so that its structure is resolved accurately. 

Three different adaptive techniques can be used to refine the grid and follow steep, fast-moving 
fronts: static, hybrid and moving methods. In static or rezoning methods, the grid is refined, 
where needed, according to some criterion such as equidistribution of the arc length of the 
temperature profile, variational principles which minimize a functional, etc. In moving or 
dynamic methods, differential equations for the grid point motion are solved in conjuntion with 
equation (1) .  The equations for the grid point motion may be obtained from variational 
principles, equidistribution techniques, etc. A major difference between adaptive static and 
adaptive dynamic or moving methods is that, in static methods, the grid points may remain fixed 
for intervals of time, whereas, in dynamic methods, the grid motion and the finite difference form 
of equation ( 1 )  are fully coupled at each time step. Hybrid techniques are intermediate between 
static and dynamic methods. 

In the next subsections, static, dynamic or moving and hybrid adaptive methods of lines are 
presented. 

4.1. Adaptive static method of lines 

Adaptive static methods of lines may be based on equidistribution principles, gradients of the 
dependent variables, truncation errors, Richardson's extrapolation, variational formulations, 
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etc.2 In this section, we consider equidistribution techniques based on the equidistribution of 
a positive weight function. 

Consider equation (1) and the strictly positive weight function defined by 

which represents the arc length of the N-th dimensional vector U. Equation (43) can be discretized 
at the ( , j -  1/2)th grid point as 

It must be pointed out that both, the co-ordinate x and the vector U, must be non-dimensional 
in equation (43), and that equation (1) should be non-dimensionalized when using equidistribu- 
tion principles and weight functions. 

As previously stated, the different components, U i ,  of the vector U may exhibit steep gradients 
at different spatial locations. In most combustion problems, however, the temperature gradient 
can be used to define the weight function instead of equation (43), which accounts for the 
gradients of all components of U. 

Numerical solutions of two-point boundary value problems in ordinary differential equations 
have shown that numerical errors can be reduced by equidistributing the weight function w over 
all the computational domain as' 

X J +  1 

w ( t ,  x)dx= ~ ( t ,  x)dx. (45) 

Equation (44) can be discretized as 

h j W j = h j +  1 wj + 1 , (46) 
where hj = x j - x j -  1 ,  and wj denotes the value of the weight function at x j -  [cf. equation (44)]. 
Since w > 0, the grid points cannot cross each other, and mesh tangling and node overtaking are 
not possible. 

Equations (44) and (46) are to be solved, together with the discretized form of equation (1) as 
presented in Sections 3.1 and 3.3, to determine U and x j .  The solution of equations (1) and (46) 
can be obtained iteratively. However, if a fixed number of grid points, N J ,  is used in the 
calculations, the equidistribution principle given by equation (46) does not restrict the size of 
adjacent grid intervals, and equation (46) and the finite difference expression of equation (1) may 
yield stiff and/or ill-conditioned matrices and may require a large number of iterations to achieve 
convergence. In order to obtain smooth grids and/or avoid ill-conditioned matrices and long 
computational times, the sizes of adjacent grid spacings must be restricted in such a manner that 

where K 2 1 .  
In the calculations presented in this paper, K =  1.2, and equation (47) ensures that the grid 

spacing does not change substantially from one interval to the next one. 
The numerical solution of the discretized form of equation (1) presented in Sections 3.1 and 3.3 

and of equation (46) proceeds as follows. The initial conditions, i.e. U(0, x )  is used in equation (46) 
to determine xj; wherever equation (47) is not satisfied, grid points are added/deleted so as to 
satisfy both equations (46) and (47). With the grid spacing so obtained, equation (1) is solved with 
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any of the techniques presented in Sections 3.1 and 3.3 and a new weight function, w, is obtained, 
which is again used to solve equation (46) and determine xj so that equation (47) is satisfied. This 
iterative procedure is repeated as many times as necessary until equation (18) is satisfied. 

The locations of the grid points, xj, may vary during the iterative procedure and from one time 
step to another or when grid points are added and/or deleted so as to satisfy equation (47). When 
this occurs, an interpolation procedure must be devised to interpolate the values of the dependent 
variable Uk determined in the grid xf on the new grid x j +  ' ,  where the superscript k denotes the 
kth iteration or kth time step. This interpolation must be performed in such a manner that the 
monotonicity, positivity and conservation properties of U are satisfied. 

Conservation can be ensured provided that 

U:&l(t,x)dx, i = l ,  2 , .  . . , N .  (48) 

where u I x I b, (b  - a)  denotes the length of the physical domain, and the left- and right-hand 
sides of equation (48) are to be evaluated in the grids x5 and x5' ', respectively. 

If linear interpolation is used to evaluate U t  and Uf" in the grids x; and xfel, respectively, 
equation (47) provides the value of Uf" in the new grid xf+'. This linear interpolation also 
ensures the positivity and monotonocity of Uf' In this paper, the integrals in equation (48) were 
evaluated by means of a second-order accurate, trapezoidal rule. 

4.2. Adaptive moving method of lines 

The main disadvantages of the adaptive static technique presented in Section 4.1 are that the 
grid point locations are determined iteratively from equations (46) and (47), and that the grid 
refinement is performed once the solution of equation (1) has been obtained. As a consequence, 
the grid points may remain fixed for intervals of time, the iterative and interpolation procedures 
have to be repeated every time that grid points are added and/or deleted so that equation (47) is 
satisfied, and there is no dynamic coupling between the equidistribution principle represented by 
equation (46) and the discretized form of equation (1). 

In this section, an adaptive moving method of lines based on the technique developed by Do15 
and Drury' is presented. The starting point of this dynamic method is equations (44) and (46), 
which ensure that mesh tangling and node overtaking are not possible because w is strictly 
positive. However, regularization in both space and time is required to avoid ill-conditioned 
matrices, slow convergence and adjacent grid spacings of disparate sizes. 

Following Dorfi and Drury,' we first introduce spatial smoothing as follows. The grid point 
concentration can be defined as 

nj = ( xj  + - xj) - '. (49) 
so that equation (46) becomes 

and the spatial grid smoothing is performed by replacing nj in equation (50) by the following 
smoothed values 

iij= n j - k ( k  + l ) (nj+ -2n j  + n j -  1), k>O, (51) 
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so that the location of the grid points is determined from the following equation: 

C j - 1  f i j  
wj-1 wj 
-=- 

This smoothing procedure is equivalent to a filtering technique which ensures that 

k njW1 k + l  
-<-I- 
k + l -  nj  k (53) 

and which restricts the grid point concentration in a manner similar to equation (47). 
The following boundary conditions were imposed on equation (52) 

122 = n l ,  n N J = n N J -  1 7  (54) 
i.e. the gradients of the grid point concentration are equal to zero at both x = a  and x = b .  

Equations (5  l), (52) and (54) represent a system of algebraic equations which can be trans- 
formed into a system of ordinary differential equations by means of the temporal smoothing 
introduced in the next paragraphs. 

The temporal smoothing is based on the replacement of w by 

Note that if T = 0, then R = w. 
Integration of equation (55) yields 

dR 
w = R + T - .  

dt 

We now assume that the grid point concentration n“ is proportional to R rather than to w as 
shown in equation (52). If c (=constant) is the proportionality constant, R = cii can be substituted 
into equation (56) to yield 

W = C  n ” + T - .  ( :) 
Substitution of equation (57) into equation (52) yields 

iij- + zdfij- ,/dt - f i j  + rdfij/dt 

W j -  1 W.i 

- - 

(57) 

It must be noted that, according to equations (56)-(58), the grid motion is prevented from 
adjusting immediately to the new values of w and that R forces the grid to adjust to the new values 
of w over a delay time interval equal to T .  This ‘delayed’ adjustment avoids temporal oscillations 
in the grid point trajectories. It must also be noted that if r =0, w = R [cf. equation (56)], and an 
equidistribution technique [cf. equation ( 5 8 ) ]  similar to that presented in Section 4.1 is obtained. 
If r is very large, the grid motion lags far behind the solution of any propagating steep front. 

Equation (51) can be substituted into equation (58)  to obtain an ordinary differential equation 
for dnj/dt, whose value can be calculated by means of equation (49) as 

(59) 
dnj - dxj+,/dt-dxj/dt _- - 
dt ( x j +  1 - X j Y  ‘ 

Substitution of equations (49), (51) and (59) into equation (58) yields an ordinary differential for 
the grid motion which is subject to equation (54). 
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The discretized form of equation (1) presented in Section 3.1 together with the ordinary 
differential equation for xj described in previous paragraphs can be written as 

dV 
dt 

M(V) -=P(V), 

where 

V=(UT, x1, u:, x2, . . . , U L  XNJ)T (61) 
and the subscripts 1,2, . . . , N J  denote the grid points at which U and x are to be evaluated. Note 
that, at the boundaries of the physical domain, x = a and x = b; therefore, the co-ordinates of these 
points are specified, whereas the values of U(t, a) and U(t, b )  have to be evaluated if Neumann or 
Robin boundary conditions are used, Note also that the substitution of equations (49), (51) and 
(59) into equation (58) yields an ordinary differential at the jth point which depends on xjP2, xj- 1, 
xj, xj+ 1, x ~ + ~ ,  dxj-,/dt, dxj-,/dt, dxj/dt, dxj+l/dt and dx,+,/dt, whereas equation (7) depends 
on Uj- 1, Uj, Uj+ 1, xj-l ,  xi and xj+ 1.  

Equation (60) was solved by means of the Euler backward difference method and the modified, 
damped, Newton-Raphson technique presented in Section 3.1 until equation (18) was satisfied. 

4.3. Aduptive hybrid method of lines 

The static and dynamic methods of lines presented in Sections 4.1 and 4.2, respectively, are 
based on an equidistribution principle [cf. equation (45)], whose precise meaning can be 
interpreted as follows. Consider the mapping (t,  x) H ( < ,  a), where 

which implies that 0 I 11 I 1. 
If an equally spaced grid is used in the co-ordinate q, i.e. v j -  q j -  = q j+  - q j ,  then equation (45) 

is obtained. 
The mapping defined by equation (62) can be substituted 

-+--=--+s au auaq a q a ~  

a t  all at ax all ' 
where 

into equation (1) to obtain 

Since @/ax =(8x/all)-' and aq/dt  = -(i?q/ax)(ax/a<), equation (63) can be written as 

axau axau ax 
all at a t  all ayl 

Q, -----=- 

where 

aF 
Q = Z + S .  

Equations (62) and (65) or equations (62) and (63) provide integral and partial differential 
equations for the grid motion x(z, v )  and U(T, q) ,  respectively. However, if a fixed number of grid 
points were used in the calculations, the grid motion would adapt immediately to the value of the 
weight function and oscillations would be produced unless a temporal smoothing similar to that 
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presented in Section 4.2 is employed. In the absence of temporal and spatial smoothing [cf. 
equations (47) and (51)], the grid may not be smooth and the discretization of equation (65) may 
result in ill-conditioned matrices and/or slow convergence rates. 

In this section, we present an adaptive hybrid method of lines, which is an intermediate 
technique between the static and dynamic methods of lines presented in Sections 4.1 and 4.2, 
respectively. The hybrid method of lines presented in this section is a predictor<orrector scheme, 
which consists of a predictor step and a corrector step. In the predictor step, it is assumed that 
dx/df = 0 so that equation (65) becomes 

dU 
-=Q. 
d t  

Equation (67) can be solved by means of the methods presented in Sections 3.1 and 3.3 to yield 
the value U*, which is then used in equation (62) to obtain the values of xj*. These values are then 
assumed to be equal to xf+'. 

In the corrector step, equation (65) is discretized as 

where 0 I 0 I 1, the spatial derivatives have been discretized, and ax/af has been replaced by 

The values 8=  1 and 8=* correspond to the implicit and Crank-Nicolson methods, respect- 
ively, and equation (68) represents a non-linear, first-order, ordinary differential equation for U, 
which can be solved by means of the Newton method as indicated in equation (16). In the 
calculations presented in this paper the value 8 = 5 was used in equation (68), and equation (67) 
was solved by means of the modified, damped Newton-Raphson method presented in Section 3.1 

The main advantage of the hybrid technique presented in this paper is that grid tangling and 
node overtaking are avoided because the weight function, w, is strictly positive. Another 
advantage is that the predictor and corrector steps, and the grid motion and the solution of 
equation (1) are not fully coupled at each time step. However, the technique has the following 
drawbacks. First, it does not ensure smooth grids because a subequidistribution principle similar 
to equation (47) or grid smoothing similar to equation (51) is not used. This may result in slow 
convergence of the Newton method. Second, the grid motion is not coupled fully to the 
solution of U and there is a lag between the predicted grid xT and the solution U"". This lag is 
a consequence of the assumption that x:+' =x; and may require the use of small time steps to 
obtain accurate solutions, especially if the solution is characterized by the presence of a steep, 
fast-moving front. This lag can, however, be reduced, if not eliminated, by using the solution U"' 
in equation (62) to obtain an improved value of xT and by repeating this iterative procedure until 
the difference between the values of x: in two successive iterations of the corrector step is 
sufficiently small. Unfortunately, this iterative procedure was found to be more time-consuming 
than the adapive static method of lines presented in Section 3.1 and was not used in the 
calculations presented in this paper where the time step was chosen to be sufficiently small so as 
to obtain accurate results. 

The third main disadvantage of the hybrid method of lines described in this section is that 
Newton's method may fail to converge when determining the initial grid, i.e. the grid xf based on 

( x ? - ~ f ) / A t = ( ~ ' j + '  -xJ)/At. 

with e= 1. 
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the known solution U", if equation (46) is used. This problem was solved by using the following 
equation [cf. equation (64)]: 

Since U" is known from the initial conditions, the weight function, w [cf. equation (43)], is also 
known, and equation (69) can be solved to obtain x((", q).  Note that ~ ( t ,  a)=O and ~ ( t ,  b)= 1. 

It must be pointed out that the adaptive hybrid method presented in this section may also use 
the subequidistribution principle of equation (47) in order to ensure smooth grids. 

5. PRESENTATION OF RESULTS 

In this section the non-adaptive and adaptive finite difference methods presented in Sections 
3 and 4 are applied to a variety of one-dimensional problems. Some of these problems have been 
solved previously by the author, using finite element methods.' 

5.1. One-step decomposition reaction 

As a first application of the numerical methods presented in Sections 3 and 4, we consider 
a one-step decomposition reaction governed by the following non-dimensional equation and 
initial and boundary conditions: 

dT B2T 
- +D(1 +a-T)exp(-S/T), t > O ,  O<x< 1, 

at 6x 

where T is the temperature, c1= 1, b=20, D=Rexp(G)/uG and R = 5 .  
Equations (70) and (71) represent a mathematical model of a one-step decomposition reaction 

characterized by the conversion of fuel to combustion products. It is also a one-dimensional 
model of heat transfer phenomena with internal heat generation, and has been analysed pre- 
viously by Petzold' and Adjerid and Flaherty,' who used adaptive moving finite difference 
methods based on variational formulations and moving finite element methods with error 
control, respectively. The adaptive finite difference technique employed by Petzold' was based on 
the minimization of the time rate of change of U and x in the co-ordinates ( z , ~ )  and this 
minimization yielded an equation for the grid velocity. In order to avoid mesh tangling and grid 
point collisions, Petzold' used a penalty formulation which gives adjacent points nearly equal 
velocities. 

Adjerid and Flaherty' used a finite element method with linear test and trial functions and 
spatial error estimates to move the grid and refine it locally so as to equidistribute a measure of 
the total spatial error. 

Equation (70) was solved by means of the non-adaptive and adaptive finite difference methods 
presented in Sections 3 and 4. Thirty-six grid points were used with the adapive dynamic method 
presented in Section 4.2 as compared to the thirty and twenty grid points employed by Petzold' 
and Adjerid and Flaherty,' respectively. 

Figures 1 and 2 show the temperature profiles and the locations of some of the grid points as 
functions of time. In particular, Figure 1 shows the ignition of the fuel and the flame propagation 
at selected times. The temperature profiles shown in Figure 1 are in very good agreement with 
those of Petzold' and Adjerid and Flaherty.' 
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Figure 2. Locations of the grid points 

Petzold8 showed that the ignition time and the temperatre profiles are very sensitive to the 
number of grid points and to the adaptive moving method used in the calculations. This is due to 
the extremely fast rate of ignition, the flame front velocity, and the exponential non-linearity of 
the source term in equation (70). A similar behaviour was also observed in the computations 
performed with the adaptive moving method of lines presented in Section 4.2. As indicated in 
Section 4.2, if the delay time, t, in equation (58)  is too large, the grid motion lags far behind the 
solution of the steep, moving flame front. 

Adjerid and Flahertyg also showed that the ignition time and the computed temperature 
profiles are very sensitive to the value of the parameter which controls the difierence between the 
velocities of two adjacent nodes. For small values of that parameter, the grid motion is too slow 
and unable to follow the flame front. On the other hand, large values of that parameter result in 
grids which are able to follow the rapidly moving flame front but concentrate the grid points near 
x = 0, where ignition takes places, and the computations require small time steps. 

Furzeland et al." solved equation (70) by means of finite difference methods based on the 
adaptive techniques proposed by D o h  and Drury' and Petzold.8 They also used the moving 
finite element method developed by Miller,' performed numerical studies aimed at assessing the 
reliability, robustness and efficiency of these three adaptive techniques and recommended the 
method proposed by Dorfi and Drury over those of Petzold and Miller based on the numerical 
solution of equation (70), the viscous Burgers equation, and two advection-reaction-diffusion 
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equations whose solutions are characterized by waves travelling in opposite directions. Furzeland 
et al." also showed that Petzold' method is reliable and robust, but it requires interpolation and 
many evaluations of the Jacobian matrix. 

The numerical results shown in Figure 2 indicate that the solution is characterized by two 
different processes; initially, an ignition kernel is formed near x = 0, whereas at later times, a flame 
front propagates toward the right boundary. These two proceses are characterized by two 
different time scales. The formation of the ignition kernel proceeds at a faster rate than the flame 
propagation. Therefore, small time steps must be taken in order to simulate ignition accurately. If 
the time step is large, any errors in the numerical simulation of ignition will affect the flame 
propagation at later times. 

The adaptive moving method presented in Section 4.2 was solved with 36 grid points and 
5 = lo-'. The time step was varied from at ignition, i.e. when the mixture is ignited at x =0, 
to lop4, when a propagating flame front was established. The number of evaluations of the 
Jacobian matrix depended on the time step used in the calculations and on z. In particular, small 
values of 7 required small number of evaluations of the Jacobian matrix: the values of z =  
and z =  lo-* required 874 and 268 evaluations, respectively, of the Jacobian matrix in the 
Newton method when the time step was set equal to throughout the calculations. For 
a time step equal to the values of z= lop6 and T =  lo-' required 5031 and 1354 evaluations 
of the Jacobian matrix, respectively. The differences in the number of evaluations of the Jacobian 
matrix were due to the extremely fast ignition rate and the number of grid points used in the 
calculations. For z = lo-' and a time step equal to 10- 5 ,  calculations with 25 grid points required 
893 evaluations of the Jacobian matrix as compared to 268 evaluations for 36 grid points and the 
same values of the time step and the delay time. 

Equations (70) and (71) were also solved with the adaptive static and adaptive hybrid methods 
presented in Sections 4.1 and 4.3, respectively. The adaptive static method of Section 4.1 was 
initialized with 100 grid points and required 739 evaluations of the Jacobian matrix. The same 
method required 1671 evaluations of the Jacobian matrix when 50 grid points were used in the 
calculations. In both cases, the time step had to be equal to in order to satisfy the 
convergence criterion of equation (18) and avoid a higher number of evaluations of the Jacobian 
matrix. 

The adaptive hybrid method of Section 4.3 was also initialized with 100 grid points and 
required 1083 evaluations of the Jacobian matrix when a time step equal to was employed in 
the calculations. In order to keep the total number of evaluations of the Jacobian matrix below 
800, it was found that the time step should never be greater than Otherwise, the Newton 
method would require more iterations to satisfy the convergence criterion of equation (1  8) andjor 
the accuracy of the adaptive hybrid method would be extremely poor. This is due to the fast 
ignition rate, the high velocity of the moving flame front, and the exponential non-linearity of the 
non-linear source term in equation (70). Note that in the adaptive hybrid method of Section 4.3, 
the predictor step is used to predict a grid which does not correspond to the solution of equations 
(70) and (711, i.e. there is a lag between the predicted grid and the solution of the corrector step. 
This lag increases as the time step is increased, especially if the problem under study involves 
a fast-moving front such as the one shown in Figure 1. 

It was also observed that the convergence rate of the adaptive hybrid method of Section 4.3 can 
be improved if equation (47) is used so as to ensure smooth grids. However, the adaptive hybrid 
method with equation (47) always required a larger number of evaluations of the Jacobian matrix 
than the adaptive static method of Section 4.1 when the same number of grid points was used in 
both techniques. This was also attributed to the lag between the predictor step which is used to 
calculate the grid, and the corrector step which is used to evaluate the temperature. 
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Both the adaptive static and the adaptive hybrid methods always required more than 50 grid 
points to keep the total number of evaluations of the Jacobian matrix below 800. Note that the 
adaptive moving method required fewer than 268 evaluations of the Jacobian matrix and used 
bigger time steps than the adaptive static and the adaptive hybrid methods. 

Equaiions (70) and (71) were also solved with the non-adaptive methods of lines presented in 
Sections 3.1-3.3. It was found that the Crank-Nicolson methods (O=i) of Section 3 required 
a slightly higher number of evaluations of the Jacobian matrix than the Euler backward or 
implicit (0 = 1) technique. 

The method of lines of Section 3.1 employed equally spaced grids with 250 grid points to 
achieve the same accuracy as the adaptive moving method of Section 4. The fourth-order accurate 
method of lines presented in Section 3.2 also required the same number of grid points to obtain an 
accurate resolution of the steep moving flame front. A smaller number of grid points yielded 
temporal oscillations in front of and behind the flame, and the size of these oscillations could be 
reduced only by either decreasing the grid spacing and/or the time step used in the calculations. 
Therefore, although the method of lines of Section 3.2 has more spatial accuracy than that of 
Section 3.1, the accurate resolution of steep moving flame fronts requires that both techniques 
employ nearly the same number of grid points. Furthermore, the fourth-order accurate method of 
lines of Section 3.2 required smaller time steps than that of Section 3.1, because of the lineariz- 
ation of the source term [cf. equation (22)]. Note that equation (36) is linear; therefore, the 
accuracy of the solution depends on the time step used in the calculations. On the other hand, 
equation (10) is non-linear and must be solved iteratively until equation (18) is satisfied. 

The second- and fourth-order accurate methods of lines presented in Sections 3.1 and 3.2, 
respectively, were used to solve the diffusion operator of equation (42), whereas the reaction 
operator of equation (41) was solved by means of the Newtonian method. Since equation (70) is 
a scalar equation with a diffusion coefficient equal to one, the characteristic diffusion time [cf. 
equation (40)] is Ax2, whereas the characteristic reaction time is a function of space, because the 
source term is a function of space. The characteristic reaction time employed to solve equation 
(41) corresponded to the largest temperature. 

The method of lines of Section 3.2 was found to be less accurate than that of Section 3.1 for the 
solution of the diffusion operator [cf. equation (42)]. This result is consistent with those obtained 
by the author in his numerical studies of one-dimensional scalar equations.’ Note that the 
methods of lines of Sections 3.1-3.3 used the same number of grid points, i.e. 250, and that the 
accuracy of operator-splitting methods deteriorates at  a higher rate than those of Sections 3.1 and 
3.2 as the time step and/or grid spacing are increased due to the partial uncoupling between the 
reaction and diffusion operators of equations (41) and (42), respectively. 

5.2. Confined-flame propagation 

Consider a one-dimensional laminar flame in Cartesian co-ordinates and assume that the Soret 
and Dufour effects, pressure gradient diffusion, body forces, bulk viscosity and radiative heat 
transfer are negligible. Assume also that the Mach number is small, so that the pressure is 
spatially uniform and that the chemical species diffuse according to Fick’s law with equal 
diffusion coefficients and that the species’ specific heats at constant pressure are equal and 
constant. Under these assumptions, the equations governing the flame propagation can be 
written as 

ap a 
-+-((Pu)=O, 
at* aZ 
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NS 
1 Yi=l, 

i = l  
(77) 

where t* is time, z is the Cartesian co-ordinate, p ,  p and T denote the mixture density, pressure 
and temperature, respectively, u is the mixture velocity, D and 1 are the diffusion coefficient and 
heat conductivity, respectively, Yi,  hi and hP denote the mass fraction, reaction rate and enthalpy 
of formation of species i, respectively, NS is the number of chemical species, R" is the universal gas 
constant and M i  denotes the molar mass of species i. Equations (72)-(75) represent the continuity, 
linear momentum, species and energy conservation equations, respectively. Equation (76) is the 
equation of state for the mixture, which was assumed to be composed of ideal gases. 

Equations (72)-(75) are to be solved for t > O  and O < z <  L, and represent a mixed system of 
advection-reaction-diffusion equations which can be transformed into a system of reac- 
tion-diffusion equations by means of the von Mises transformation, 

where 

M = joL p dz, 

and M denotes the mass per unit area. 
Substitution of equations (78) and (79) into equations (72), (74) and (75) yields 

ari mi hi 
d t  ax2 
_- - x -  +-, i = l , 2 , .  . . , N S ,  

where a = p Z D / M Z  has been assumed to be constant and the Lewis number, Le=I /pC,D,  was 
assumed to be equal to one. The value of dpldt in equation (83) can be calculated as follows. Due 
to the low Mach number assumption, the pressure is spatially uniform [cf. equation (73)], and 
equation (76) can be integrated from z = 0 to z = L to yield 

where equation (79) has been used. 
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Equations (82)-(84) are of the integrodifferential reaction-diffusion type and can be integrated 
from x =O to x = 1 by means of the non-adaptive and adaptive finite difference methods presented 
in Sections 3 and 4, respectively. Once Yi ( i =  1,2, . . . , NS) and Tare known, equations (84) and 
(76) can be used to calculate p ( t )  and p ( t ,  x), and integration of equation (81) yields the fluid 
velocity. Note that u(t ,  O)=u(t ,  L)=O. 

The Cartesian co-ordinate z can be calculated from equation (79) as 

dx 
z = M  jo 7' 

In the calculations presented in this section, the following one-step irreversible chemical 
reaction was considered 

C3H8+502+3C02 +4H2O (86) 

031 = - MlR, 1 5 2  = - 5M2R, (87) 

1 5 3  = 3M3 R, Li)4 = 4M4Q (88) 

where subscripts 1-4 denote propane, oxygen, carbon dioxide and water vapour, respectively; 
M1 = M3 = 44 g, M2 = 32 g, M4 = 18 g, E = 30 000 cal/mol is the activation energy of the reaction, 
K =  1.27 x loi3 cm3/-, a=2-17 x s-', C,=7 cal/mol/K, L= 10 an, NS=4 and 

NS 
C h!oji=Qhl, 

i = l  

where Q = 11 070 cal/g denotes the heat of combustion. Equations (72)-(73) and equations (81) 
and (83), with p = constant, govern the propagation of one-dimensional low Mach number, 
unconfined, laminar flames. In fact, equation (70) represents a simplified non-dimensional model 
of equations (82) and (83). 

Equation (84) can be substituted into equation (83) and the resulting equation together with 
equation (82) can be solved, by means of the methods of lines presented in Sections 3 and 4, 
subject to the following boundary conditions: 

aT dT 
-(t ,  O)=- ( t ,  L)=O, ax ax 

a ri a yi 
-(t, O)=-(t ,  L)=O. 
ax ax 

It must be noted that the co-ordinate x in equation (79) is non-dimensional and that equations 
(82) and (83) were first written in non-dimensional form as follows. The initial temperature and 
pressure, and a - l  were used in the non-dimensionalization of T, p and t, respectively. The reason 
for this non-dimensionalization is that the adaptive methods of lines presented in Section 4 use 
a weight function which depends on the gradients of the dependent variables. Note that the 
species mass fractions are dimensionless. 

The initial conditions used to solve equations (82)-(84) corresponded to a stoichiometric 
mixture and are illustrated in Figures 3 and 4, which show the dimensional temperature (T) and 
the fuel mass fraction ( Y 1 )  profiles at different times. These initial conditions correspond to the 
presence of burnt mixture at the left boundary and were imposed so as to avoid the time- 
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consuming simulation of ignition at that boundry. Note that ignition was simulated in Sec- 
tion 5.1. 

The results shown in Figures 3 and 4 were obtained by means of the adaptive moving method 
presented in Section 4.2 with 50 grid points, z = 10- ’ and a variable time step. The value of z used 
in this section is higher than that used in Section 5.1, where ignition was simulated, and the time 
step was varied in such a manner so as to keep the number of the evaluations of the Jacobian 
matrix below 250. The adaptive moving method of Section 4.2 used the method of lines of Section 
3.1 with 8= 1. 
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Equations (82)-(84) were also solved with the adaptive static and adaptive hybrid finite 
difference methods of Sections 4.1 and 4.3, respectively. The adaptive static method required 
between 67 and 93 grid points and a time step of lop7 in order to satisfy the convergence criterion 
of equation (1 8) and keep the number of evaluations of the Jacobian matrix below 250. Larger 
time steps and/or fewer grid points resulted in a slower convergence rate of the Newton 
method and a larger number of evaluations of the Jacobian matrix. The slow convergence rate 
was attributed to the frequent need for regridding required to satisfy equation (47). Note that 
since a confined flame is considered, the mixture temperature and pressure increase with time; 
therefore, the magnitude of the non-linear source terms and the flame speed also increase with 
time. 

The adaptive hybrid method of Section 4.3 also required between 67 and 93 grid points to 
satisfy the convergence criterion of equation (18) and keep the number of evaluations of the 
Jacobian matrix below 250. However, the hybrid method required the use of a time step equal to 
lo-' and the use of equation (47). If equation (47) were not used, the grid would not be smooth 
and a larger number of iterations would be required to satisfy equation (18) if At=lO-'. 
Moreover, if equation (47) is used, but At > lo-', the number of evaluations of the Jacobian 
matrix also increases because of the lag between the grid predicted in the predictor step and the 
solution corresponding to the corrector step. Note that the temperature and the fuel mass fraction 
profiles steepen and the flame speed increases with time due to the confinement of the mixture (cf. 
Figures 3 and 4). Therefore, in order to avoid a large lag between the predictor and corrector 
steps, the time step had to be reduced, as indicated in previous paragraphs. 

In order to obtain as accurate results as those of the adaptive moving method of Section 4.2, the 
non-adaptive techniques presented in Section 3 required 1600 grid points. The method of lines of 
Section 3.1 employed a time step equal to and yielded oscillations in front of and behind the 
flame front if S=:. The magnitude of these oscillations was reduced by decreasing the time step. 
No oscillations were observed for 8 = 1 and At = 

The fourth-order accurate method of lines with 0 = 1 required a Af = lo-' to achieve the same 
accuracy as the adaptive moving technique of Section 4.2. The difference inetime steps between the 
methods of lines of Sections 3.1 and 3.2 is due to the time linearization of the source terms in 
Section 3.2. 

The fourth-order accurate method of lines with O = +  and At= lo-' yielded temperature 
oscillations in front of and behind the flame front. The magnitude of these oscillations was higher 
than that of the methods of lines of Section 3.1, with 0 =3 and At = lo-', and could be reduced by 
decreasing the time step. Similar oscillations were observed when the methods of lines of Sections 
3.1 and 3.2, with 8=*, were used to solve the diffusion operator of Section 3.3. 

The operator-splitting methods of Section 3.3 yielded slightly slower flame fronts than those 
predicted by the numerical techniques of Sections 3.1 and 3.2. The solution of the diffusion 
operator by means of the fourth-order accurate method of lines presented in Section 3.2 yielded 
a slower flame than that predicted by the numerical technique presented in Section 3.1 for 
At = lo-?. However, the accuracy of the operator-splitting technique increases as the time step is 
decreased. 

The large difference in the number of grid points used by the non-adaptive and adaptive 
methods presented in Sections 3 and 4, respectively, to solve the flame propagation problems of 
Sections 5.1 and 5.2, is due to the simulation of ignition in Section 5.1 and the flame front 
thickness in Section 5.2. The numerical simulation of ignition in Section 5.1 requires the use of 
small time steps in order to resolve accurately the formation of the ignition kernel near x=O; 
however, the thickness of the flame front presented in Section 5.1 is much larger and its resolution 
requires fewer grid points than that of Section 5.2. 
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5.3. The Dwyer-Sanders model of one-dimensional luminur$ame propagation 

The Dwyer-Sanders model of one-dimensional laminar-flame propagation can be obtained 
from equations (82) and (83) by assuming that the pressure is constant. The resulting set of 
non-dimensional equations can be written asi2 

ay a 2 y  

at - ax2 
r n ( T ) ,  t > O ,  O<x<l,  (93) 

(94) 
dT Z2T 
at Zx2 
- + Y W T ) ,  t > O ,  O<x<l,  

where 

SZ(T)=3*52x exp (-4). (95) 

Equations (93)-(95) are subject to the following initial and boundary conditions: 

Y(0, X) = 1, T(0, X) = 0-2, (96) 

d Y  CST 
- ( t ,  0) = - ( t ,  0) = 0, 
dX i?X 

dY 
- ( t ,  1)=0, 
dX 

0.2 + t/0.0002, 0 < t < 0.0002, 
t 2 0.0002. 

T(t,  1)= 

(97) 

(99) 

Equations (93)-(99) correspond to the ignition of a confincd, one-dimensional mixture where 
the right-boundary temperature is increased linearly with time until it reaches a value equal 
to 1.2. 

Equations (93) and (94) were solved by means of the adaptive moving method of Section 4.2, 
with T =  lop8, At=  and 25 grid points, and the results of this method are illustrated in 
Figures 5-7, which show the temperature and fuel mass fraction profiles and the locations of some 
of the grid points, respectively, at selected times. 

Figures 5 and 6 show the ignition of the fuel at x = 0 and the fast propagation of a steep moving 
flame front towards the left boundary, located at x=O, whereas Figure 7 shows that the grid 
follows and concentrates the points at the flame front. 

Petzold' and Verwer et d 3  have also solved equations (93)-(99) by means of adaptive moving 
methods. In particular, Petzold* used an adaptive technique which minimizes the time rate of 
change of U and x, and yields a first-order, ordinary differential equation in time for the grid 
motion. 

Verwer et aL3 used an adaptive hybrid, space-time finite element technique similar to the 
hybrid method of lines presented in Section 4.3 and showed that iterative techniques may not 
converge when determining the initial grid. Verwer et aL3 also expanded the finite element 
discretizations of equations (92) and (93) around the old grid in order to obtain the partial 
differential equations represented truly by the finite element method.'3* l4 The resulting modified 
equation contains second-order derivatives with respect to time and mixed derivatives with 
respect to space and time, and can be used to control the time step by controlling the magnitude of 
the temporal truncation errors. Note that the spatial discretization errors are somewhat 
controlled by the equidistribution technique [cf. equation (62)]; however, in adaptive methods, 
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Figure 5. Temperature profiles 

0 0.5 X f 

Figure 6. Fuel mass fraction profiles 

both space and time are coupled through the grid motion, and the spatial and temporal truncation 
errors are necessarily related. 

T = lo-* and 25 grid points, 
required 132 evaluations of the Jacobian matrix in the Newton method. This number 
increased as T was increased; for example, z = required 257 and 168 evaluations 
of the Jacobian matrix, respectively. 

Equations (92) and (93) were also solved with the adaptive static and adaptive hybrid methods 
of Sections 4.1 and 4.3. The adaptive static method employed 64 grid points and At = to 
achieve the same accuracy as the adaptive moving technique and required 147 evaluations of the 

The adaptive moving method of Section 4.2, with At = 

and 7 = 
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Figure7. Locations of thc grid points 

Jacobian matrix. For A t =  and 45 grid points, the adaptive method of Section 4.1 required 
451 evaluations of the Jacobian matrix; most of these evaluations were due to interpolation and 
regridding and can be reduced by using smaller time steps. 

The adaptive hybrid method of Section 4.3 also used 64 grid points and a time step equal to 
and required 201 evaluations of the Jacobian matrix. The smaller time step used by the 

adaptive hybrid method is a consequence of the lag between the predictor and corrector steps. 
Larger time steps yielded oscillatory temperature profiles in front of and behind the flame front 
due to the uncoupling between the predicted grid and the solution of the partial differential 
equations. Note that equations (92) and (93) are characterized by the presence of a steep, 
fast-moving flame front as illustrated in Figures 5 and 6. 

Equations (92) and (93) were also solved in equally spaced grids by means of the non-adaptive 
methods presented in Sections 3.1-3.3. These methods required 1200 grid points to achieve the 
same accuracy as the adaptive moving method of Section 4.2. The method of lines of Section 3.1 
used a time step of because of the 
linearization of the non-linear reaction-diffusion operator and the high speed of the moving flame 
front. Larger time steps deteriorated the accuracy of the time linearization procedure used in 
Section 3.2 and yielded oscillatory temperature profiles in front of and behind the steep flame 
front. In some cases, these oscillations yielded negative species mass fractions. 

The operator-splitting techniques of Section 3.3 required time steps equal to 
when the methods of lines of Sections 3.1 and 3.2, respectively, were used to solve the diffusion 
operator. Larger time steps resulted in a larger number of evaluations of the Jacobian matrix and 
temperature oscillations, specially if t3=4 was used in the methods presented in Sections 3.1-3.3. 

whereas that of Section 3.2 employed a At = 5  x 

and 5 x 

6 .  CONCLUSIONS 

Three non-adaptive and three adaptive methods of lines have been used to study three one- 
dimensional, laminar-flame propagation problems. The first non-adaptive technique uses a finite 
volume formulation to discretize the spatial co-ordinate and yields a system of first-order, 
non-linear, ordinary differential equations in time, which was solved by means of a modified, 
damped Newton method. The second non-adaptive method uses time linearization, discretizes 



722 J. 1. RAMOS 

the time derivatives and yields a system of second-order, linear, ordinary differential equations, 
which was solved by means of three-point, compact, finite differences. 

The third non-adaptive technique takes advantage of the disparity in the time scales of the 
reaction and diffusion processes, splits the reaction-diffusion operator into a sequence of reaction 
and diffusion operators, and solves the reaction operator by means of a modified, damped Newton 
method. The diffusion operator was solved by means of second- and fourth-order accurate 
methods of lines. 

The three adaptive methods of lines presented in this paper are based on the equidistribution of 
the arc length of the vector of the dependent variables. The first adaptive technique is static and 
uses a subequidistribution principle to avoid non-smooth grids. The second adaptive technique is 
dynamic, uses temporal and spatial smoothing procedures and yields a system of non-linear, 
ordinary differential equations for the grid motion, which is solved iteratively together with the 
discretized forms of the partial differential equations for the dependent variables. 

The third adaptive method is an intermediate technique based on a predictor-corrector 
procedure where the predictor step is used to predict the grid point locations, whereas the 
corrector step is employed to determine the dependent variables. 

Application of the three adaptive methods presented in this paper to three one-dimensional, 
laminar-flame propagation problems indicates that adaptive moving methods require fewer grid 
points than adaptive static and adaptive hybrid techniques. However, adaptive moving methods 
are rather sensitive to the time step, non-linearity of the chemical reaction, number of grid points, 
and delay time for the grid motion if ignition phenomena proceed at a fast rate and/or if the steep 
flame front moves at a high speed. Large delay times result in grids which lag far behind the steep 
moving front and are not able to follow the flame. 

If the number of grid points and time step used in adaptive moving methods are not sufficiently 
large and sufficiently small, respectively, a large number of evaluations of the Jacobian matrix is 
required. Furthermore, if the time step is not sufficiently small, any errors produced during 
ignition will affect the flame propagation at later times. 

The adaptive static method required more grid points and a larger number of evaluations of the 
Jacobian matrix than the adaptive moving method, due to regridding and interpolation. Since the 
adaptive static method uses an equidistribution technique, the values of the dependent variables 
have to be interpolated in such a manner so as the ensure conservation and the positivity and 
monotonicity of the solution. 

The adaptive hybrid method employed about the same number of grid points but required 
a larger number of evaluations of the Jacobian matrix and a smaller time step than the adaptive 
static technique. This is due to the uncoupling between the predictor and corrector steps, for the 
predictor step is used only to estimate the locations of grid points at the next time level, whereas 
the corrector step is used to obtain the solution in the predicted grid. 

The adaptive static and adaptive hybrid methods of lines may yield oscillatory temperature 
profiles in front of and behind the flame front unless the time step and the number of grid points 
are sufficiently small and sufficiently large, respectively. 

The non-adaptive methods of lines presented in this paper require a much larger number of 
grid points than adaptive techniques in order to resolve the flame front structure accurately and 
simulate fast ignition phenomena. Non-adaptive, fourth-order accurate methods of lines in space 
require about the same number of grid points than non-adaptive second-order accurate methods 
of lines in order to obtain oscillation-free temperature profiles. They also require smaller time 
steps if ignition phenomena proceed at a fast rate and/or if the flame speed is high, because they 
are based on the time linearization of the source terms and the accuracy of this linearization 
deteriorates as the time step is increased. Non-adaptive, operator-splitting techniques exhibit the 
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same characteristics as, but yield slightly slower flames than, the non-adaptive, second- and 
fourth-order accurate methods of lines presented in this paper. 
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